

"Determinamos los efectos de la contaminación"

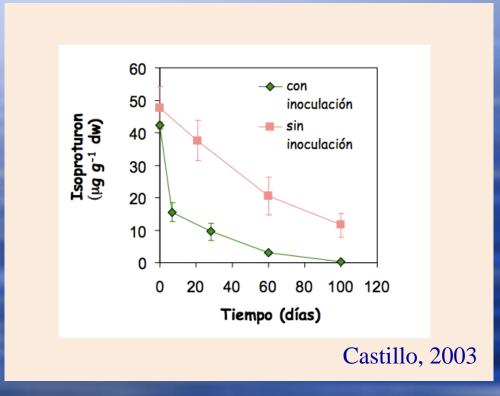
Determinación de la efectividad destoxificante de camas biológicas

Lic. Pablo Mayorga SEPRA

Ciudad de Guatemala, 26 y 27 de junio 2014

¿Cómo se pueden determinar los riesgos de la contaminación?

Enfoque químico


(análisis químicos de los contaminantes)

Enfoque ecotoxicológico

(pruebas de toxicidad -bioensayos-)

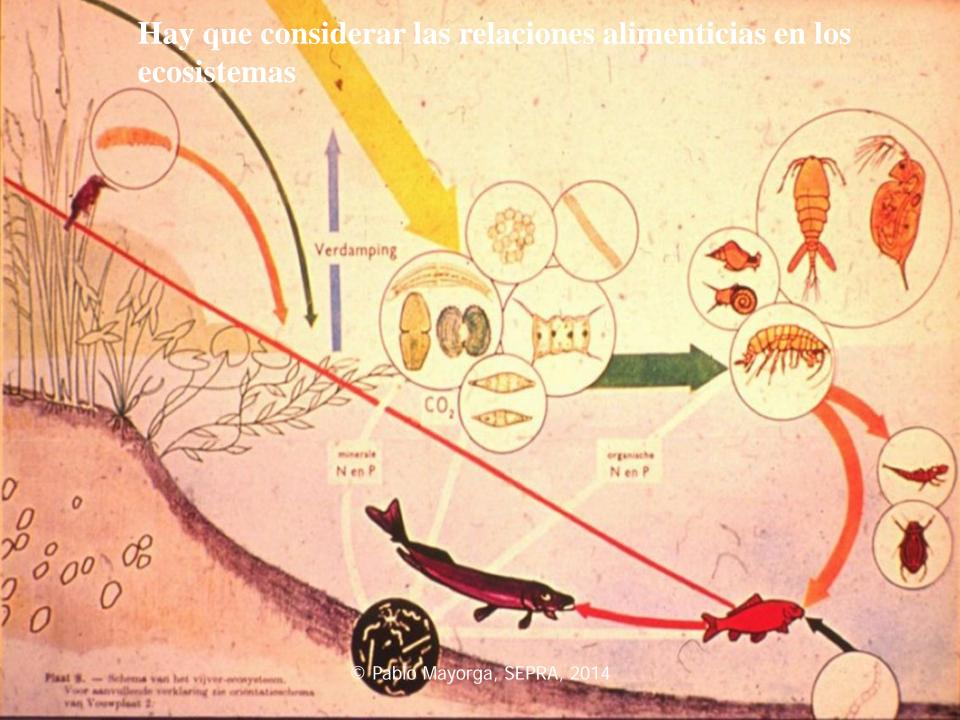
¿Como se evalúa la eficiencia de camas biológicas?

- Reducción de concentración de compuestos que ingresan al sistema
- Desventajas
 - No dice si causa
 efectos nocivos en
 seres vivos o si hay
 interacciones entre
 sustancias presentes
 - Límites de detección
 - Metabolitos?

Pruebas de toxicidad

- Señal del impacto (efectos) de todos los químicos presentes
- Indicadores biológicos: <u>posibles</u>
 <u>impactos</u> en seres vivos
- Asegurar que lixiviados que salen de las camas biológicas no son tóxicos

Organismos utilizados en bioensayos de toxicidad


- Bacterias
- Algas azulverdosas
- Levaduras
- Hongos
- Protistas ciliados y flagelados

- Algas unicelulares (verdes, rojas, cafés)
- Plantas vasculares
- Celenterados
- Nemátodos

Organismos utilizados en bioensayos de toxicidad

- Rotíferos
- Lombrices de tierra
- Moluscos
- Crustáceos
- Insectos
- Erizos de mar

- Peces
- Ranas
- Aves
- Mamíferos (problemas éticos)

Impacto de sustancias tóxicas en la cadena alimenticia

		Daphnia magna (24 h)	Streptoxkit F (24 h)	Thamnotoxkit F (24 h)	Rotoxkit (24 h)	Microtox (30´)				
1. Compuestos Inorgánicos										
1.1- Metales (mg/l)										
As ³⁺ (As ₂ O ₃)		6.2	8.3		12.1	5600 (5´) L				
As ²⁺ (NaAsO ₂)		3 (26 h)				26 ^L				
As ⁵⁺ (Na ₂ HAsO ₄ ·7H ₂ O)		5.4 (48h)								
Be ²⁺ (BeSO ₄ ·4H ₂ O)		4.64				15 (5´) ^L				
Ca ²⁺ (CaCl₂·2H₂O)		570	830	43	770					
Cd ²⁺ (CdCl ₂ ·2.5H ₂ O		0.7/0.9 ^L	0.25	0.2	1.2	8 ^L				
Cr ⁶⁺ (K ₂ Cr ₂ O ₇)		0.35 ^L	0.31	0.018	8.27	15 ^t				
Cu ²⁺ (CuSO₄·5H₂O)		0.07/0.536 ^L	0.038	0.079	0.026 ^L	0.2 ^L				
Fe ²⁺ (FeSO₄·7H ₂ O)		24.5/30.2	145	41.5	23.53	71 (5´) ^L				
Hg ²⁺ (HgCl₂)		0.022/0.0081	0.06	0.04	0.053	0.05(15´) L				
K+ (KCI)		980/330		410	880					
Mg ²⁺ (MgSO ₄ ·7H2O)		400	360	620	360					
Mn ²⁺ (MnSO ₄ ·H ₂ O)		10	81.6	23.3	34.6	13.7(15´) ^L				
Na ⁺ (NaCl)		400/2200	2700	1800	1500	20000(5´) L				
Ni ²⁺	Ni(Acet) ₂	21 ^L			4 ^L					
	NiCl₂·2H₂O)	10.9				20 ^L				
	NiSO ₄ ·6H ₂ O	8.55	3.79	2.21	5.83					
Pb ²⁺	PbCl ₂	0.335 ^L		1.63	9.98					
	Pb(NO ₃) ₂					0.4 ^L				
Sb ³⁺ (SbCl ₃)			2.99	5.27		11.2				
TI+ (TI ₂ SO ₄		3.38	0.27	0.32	6.18/3.7	920 ^L				
Zn ²⁺	ZnSO₄	2.1/1.2	0.66	0.69	2.42	2 L				
	ZnCl₂		0.81	0.23	4.8	1.1 L				

	Daphnia magna (24 h)	Streptoxkit F (24 h)	Thamnotoxkit F (24 h)	Rotoxkit (24 h)	Microtox (30')				
2.4.1- Pesticidas Organofosforados									
Clorpirifós				11.8 ^L					
Diazinón			15.29	29.2 ^L					
Fenitrotión			3.96	6.6 ^L					
Malatión	0.001 ^L	64.6		33.7 ^L	3/60 (5′) ^L				
Paratión	0.002			29.1	28 (15′) [

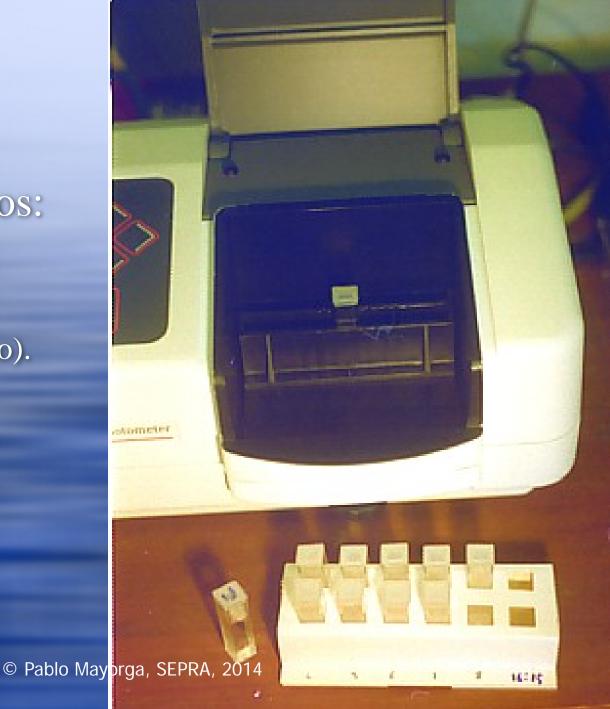
Ejemplos de efectos que se determinan con bioensayos de toxicidad

- Efecto agudos
 - P.ej., mortalidad, inmovilidad
- Efectos crónicos
 - P.ej., reproducción, crecimiento
- Mutagenicidad y genotoxicidad (futuros proyectos)
- Screening (muestras sin diluir)
- Concentraciones letales / inhibitorias / efectivas medias (efecto en el 50% de la población)

Bioensayos usados en Guatemala para determinar la efectividd destoxificante de camas biológicas

Bioensayos con organismos de agua dulce

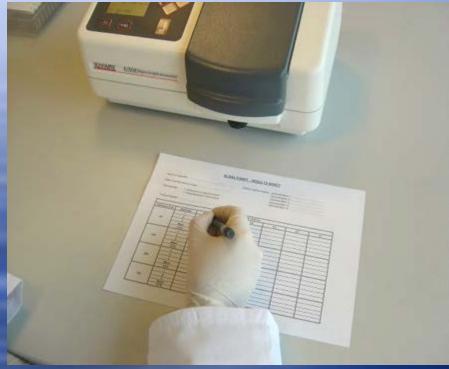
- •Protoxkit F
- •*Tetrahymena thermophila* (protozoario de agua dulce)
- •OCDE en desarrollo
- •Inhibición de reproducción
- •30° C, 24 h, oscuridad

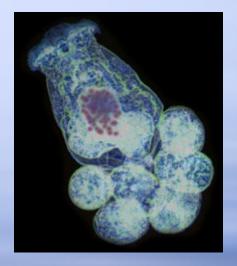


Medición de efectos:

Absorbancia a 440 nm (desaparición del sustrato).

Cálculo de CL50 con programa adecuado.


- •Algaltoxkit F
- •Selenastrum capricornutum (alga verde unicelular de agua dulce)
- •COGUANOR NTG/ISO 8692, en revisión (OCDE 201, ASTM E1218-91)
- •Inhibición de reproducción
- •72 h, 23°<u>+</u>2 C, 4000 lux inferior, 1000 lux lateral
- •Posible detectar estímulo de reproducción por exceso de nutrientes


Medición de efectos

Densidad óptica a 670 nm, cálculo de efecto con programa adecuado (tasa de crecimiento, área bajo la curva o número de algas)

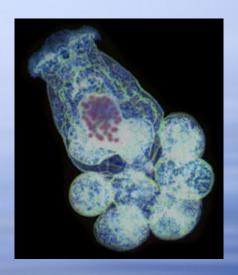
- •Rotoxkit F acute
- •Brachionus calyciflorus (rotífero de agua dulce)
- •Acute: COGUANOR/ASTM E1440-91
- Mortalidad
- •25° C, 24 h, oscuridad

- •Thamnotoxkit F
- •Thamnocephalus platyurus (Crustacea:Anacostraca, agua dulce)
- •COGUANOR NTG/ISO 14380
- Mortalidad
- •25° C, 24 h, oscuridad



Medición de efectos

Conteo de individuos muertos (pruebas agudas).


Conteo de descendencia (prueba crónica).

Cálculo de CL50 con programa adecuado.

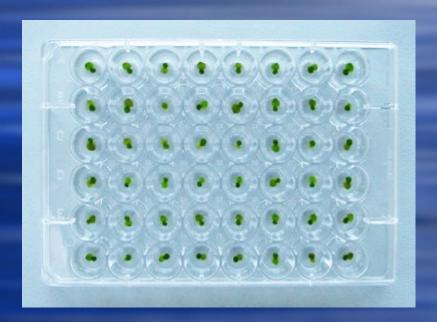
Otros bioensayos disponibles (para agua dulce)

- •Rotoxkit F chronic
- •Brachionus calyciflorus (rotífero de agua dulce)
- •Chronic: AFNOR T90-377, ISO 20666
- Reproducción
- •25° C, 48 h, oscuridad

- •Daphtoxkit F magna y Daphtoxkit F pulex
- •Daphnia magna y D. pulex (Crustacea:Cladocera, agua dulce)
- •OCDE 202, ISO 6391
- •En proceso en COGUANOR
- •Inmovilidad y mortalidad
- •20° C, 24 y 48 h, oscuridad

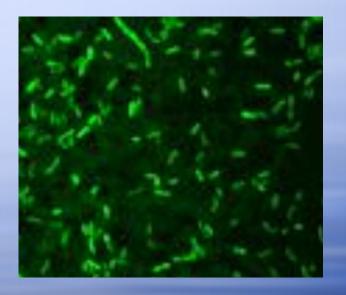
- •Ceriodaphtoxkit F (prueba aguda)
- •Ceriodaphnia dubia
- (Crustacea:Cladocera, agua dulce)
- •Ejemplo: EPA-821-R-02-012 •Mortalidad
- •25° C, 24 h, oscuridad
- •Hay prueba crónica ISO 20665

- Ostracodtoxkit F
- Heterocypris incongruens (Crustacea: Ostracoda, sedimentos en agua dulce)
- ISO 14371
- Elongación corporal y mortalidad
- 25° C, 6 días, oscuridad


Pruebas de toxicidad aguda con peces

- •Brachydanio rerio y otras especies
- •OCDE 203 y otros
- Mortalidad
- •21-25° C, 96 h, 12 h a 16 h de luz

Nuevo bioensayo en desarrollo


- Spirodela polyrhiza
- Comparación interlaboratorios internacional, finalizada en marzo 2014
- 56 laboratorios de 22 países (2 de Guatemala)
- Propuesto para método ISO

Bioensayos disponibles con organismos de agua salobre o salada

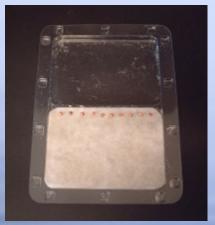
- •Microtox
- •Vibrio fischeri (bacteria marina)
- •COGUANOR NTG/ISO 11348-3
- •Inhibición de luminiscencia
- •15° C, 5 y 15 min
- •También se utiliza para agua dulce

- Toxi-screening kit
- •Vibrio fischeri (bacteria marina)
- •Lineamientos de COGUANOR NTG/ISO 11348-3
- •Inhibición de luminiscencia
- •15 a 25° C, 30 min, oscuridad
- •Prueba de campo o laboratorio

- •Marine Algaltoxkit
- •*Phaeodactylum tricornutum* (diatomea marina)
- •COGUANOR NTG/ISO 10253
- •Inhibición de reproducción
- •72 h, 20°<u>+</u>2 C, 4000 lux inferior, 10000 lux lateral
- •Posible detectar estímulo de reproducción

- •Rotoxkit M
- •Brachionus plicatilis (rotífero marino)
- •COGUANOR NTG/ASTM E1440-91
- Mortalidad
- •25° C, 24 a 48h, oscuridad

- •Artoxkit M
- •Artemia salina (Crustacea:Anacostraca, marino)
- •ARC test
- Mortalidad
- •25° C, 24-48 h, oscuridad

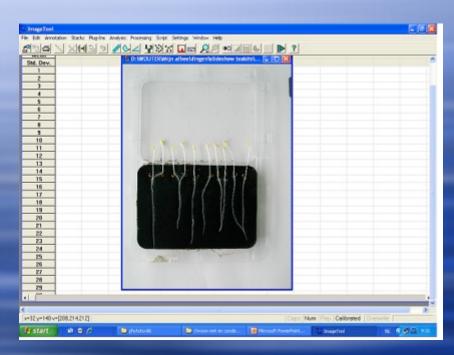


Bioensayos con plantas terrestres

Fitotoxicidad de:

- Sedimentos
- Dragados
- Suelos
- Composts
- Agua de riego
- Lixiviados (p.ej., de camas biológicas)

- Lodos (de procesos)
- Químicos
- Biocidas
- Productos fitosanitarios
- Sustrato agotado de camas biológicas (en proyecto)



- Phytotoxkit
- •Monocotiledónea *Sorghum saccharatum* y dicotiledóneas *Lepidium sativum, Sinapis alba*
- •En proceso en ISO
- •Germinación y elongación de raíz
- •25° C, 3 días, oscuridad

Medición de efectos

Fotografía de placas, transferencia de archivo a computadora, conteo de semillas germinadas y medición de raíces con Image Tools (freeware). Cálculo de % de inhibición de elongación de raíces con programa adecuado.

No tóxico

Tóxico

Lo que se ha hecho en Guatemala

- Se evaluaron mesas y camas biológicas
- Residuos de lavado de tanques de fumigación
- Sin tratamiento, toxicidad muy alta (80 a 100% de efecto)
- En algunos casos, hasta el agua de mezcla era muy tóxica
- Reducción de toxicidad hasta un poco más del 20%, en casos exitosos

Lo que se ha hecho en Guatemala

- Desventaja de bioensayo con algas verdes unicelulares cuando se aplican biocidas y fertilizantes simultáneamente, al evaluar residuos de lavado de tanques de mezcla
 - Inhibición en muestras sin diluir
 - En diluciones, desaparece la toxicidad y aparece estímulo de crecimiento de las algas por los fertilizantes
- Hay que trabajar esta prueba con diluciones

Propuesta para limites permisibles de toxicidad de lixiviados de camas biológicas

Con algunas ideas tomadas de:

- Legislación italiana, decreto D.L. 152/99
 - Pruebas de toxicidad obligatorias en efluentes (y agua):
 - Toxicidad aguda en Daphnia magna o Ceriodaphnia dubia
 - ◆ Inhibición de crecimiento de algas con Selenastrum capricornutum
 - ◆ Inhibición de luminiscencia en bacterias
 - ◆Toxicidad aguda en *Artemia salina* (para descargas salinas)

La propuesta para Guatemala

- Usar batería representativa de ensayos
- Pruebas de tamizaje sin efectuar diluciones. Se hacen diluciones para averiguar CE50 si hay efecto igual o mayor a 50%.
- **◆ Lo ideal: toxicidad menor o igual a 20%**
- **◆ Lo aceptable: toxicidad menor a 50%**
- ◆ Lo inaceptable: toxicidad igual o mayor a 50%
- Esto en todos los bioensayos. Si no se cumple en uno de los 3, no cumple.
- Si hay estímulo en vez de inhibición en los productores, considerar remoción de nutrientes.

La propuesta para Guatemala

◆ Basado en Persoone, G. *et al.* 2003. Environmental Toxicology 18: 395-402

© Pablo Mayorga, SEPRA, 2014